
Master’s Thesis

Symbolic Execution Groundwork

for Distinguishing Automatically Generated Patches

Nguyễn Gia Phong

Department of Computer Science and Engineering

Ulsan National Institute of Science and Technology

2023

Symbolic Execution Groundwork

for Distinguishing Automatically Generated Patches

Nguyễn Gia Phong

Department of Computer Science and Engineering

Ulsan National Institute of Science and Technology

Symbolic Execution Groundwork

for Distinguishing Automatically Generated Patches

A thesis submitted to

Ulsan National Institute of Science and Technology

in partial fulfillment of the requirements

for the degree of Master of Science

Nguyễn Gia Phong

2024-01-12

Approved by

Advisor

Jooyong Yi

Symbolic Execution Groundwork

for Distinguishing Automatically Generated Patches

Nguyễn Gia Phong

This certifies that the thesis of Nguyễn Gia Phong is approved.

2024-01-12

Advisor: Jooyong Yi

Mijung Kim

Yuseok Jeon

Abstract

In recent decades, automated program repair (APR) has been advancing consistently according to bench-

marks. However, its use in practice is still limited due to the difficulty in choosing a desired patch among

the generated pool.

This work introduces a method to logically differentiate between patches through symbolic execu-

tion. The technique generates a tree of decisions for developers to reason between patches based on

the program’s inputs and semi-automatically captured outputs. Its implementation PSYCHIC based on

KLEE is evaluated on patches automatically generated for toy programs in the INTROCLASS benchmark,

showing promising preliminaries.

Contents

I Introduction . 1

II Background . 2

2.1 Symbolic execution . 2

2.2 Usage of KLEE . 3

III Technique . 4

3.1 Meta program . 6

3.2 Symbolic output selection . 7

3.3 Input generation . 8

3.4 Decision tree construction . 8

IV Experiments . 10

4.1 Experiment setup . 10

4.2 Results . 10

V Discussion . 12

5.1 Threats to Validity . 12

5.2 Related Works . 12

VI Conclusion . 13

References . 14

Acknowledgements . 17

List of Figures

1 Condition injection implementation in C and example annotation. 3

2 Architecture overviews of KLEE and PSYCHIC extension. 4

3 Unified format of a fix in grep’s commit 8f08d8e2, and an alternative patch. 6

4 Meta branches with the fixes in grep’s upstream and alternative patches in figure 3. . . . 6

5 Decision tree generated from patches of grade 317a@3, with outputs minimized. 11

Technical Terms and Abbreviations

APR automated program repair. 1, 7, 10, 12

bug is a software defect that results in undesired behaviors. 1

differential test is an input and a collection of outputs of two or more programs of the same purpose,

such that each output is pair-wise different. 1, 4, 8, 9

FFI foreign function interface. 7

IR intermediate representation. 3

SAT satisfiability. 2, 3, 8

SMT satisfiability modulo theories. 3, 4, 7, 8, 12, 13

state or symbolic process, includes a program counter, an execution environment (a register file, a stack

frame, and an address space for heap and global variables), and path constraints. Variables in an

execution environment are all symbolic expressions. 2, 4

symbolic output is an output or intermediate value of a program under symbolic execution that reflects

behaviors of the program relevant to the analysis. 4, 7, 8

UB undefined behavior. 8, 10, 11

I Introduction

Modern software development is largely an iterative and incremental process [1]. Due to practically

commonly weak specifications and thus incomplete verification, each refinement may involve discover-

ing, eliminating, and creating new software defects, or bugs. Like for other software engineering tasks,

efforts have been put into automating this debugging process, including detecting and locating software

faults [2], and generating fixes [3].

Progress on APR is greatly hindered by the weak specification issue as well [3]. Due to the cri-

teria for correctness being incomplete, patches generated may over-fit such test suites, resulting in an

incomplete fix and/or new regression bugs [4]. For the same reason, more than one patch fitting the

specification can be found. Contemporary APR tools do not give insight on the difference between these

patches, but only a ranking on potential correctness [3].

While this ranking is beneficial in evaluating the tools themselves, together with the lack of certainty

of correctness, it is an insufficient guide for choosing the desired patch, if any. APR users must then

verify each patch to decide which to apply. Recognizing the tedious nature of this process, we work on

methods to highlight the semantic difference between patches, in the form of differential tests. Existing

automation techniques for differentiation such as black- or gray-box fuzzing [5] and symbolic execu-

tion [6] has shown promise on pairs of program revisions. However, there is a lack of precedents in

doing so at scale like for multiple APR-generated patches.

Symbolic execution is observed as one promising direction as it works directly with path constraints,

which can be combined and manipulated to reveal semantic differences. In this research, we explore

symbolic execution for mass differential testing with the ultimate goal of making deciding on automati-

cally generated patches easier for developers. The main contributions of this work are:

1. Introduction of semantic difference mining from multiple program revisions as a semi-automated

pipeline, for communicating the reasoning behind each patch in form of a decision tree

2. A tool named PSYCHIC implementing this process for C programs and handling platform speci-

ficities for applicative generalization

3. Preliminary results of its performance on patches automatically generated for small programs

1

II Background

As mentioned earlier, our technique is based on the symbolic execution, an engine named KLEE in

particular. Their general principles and some specifics are laid out here to make it less ambiguous to

describe our approach later on.

2.1 Symbolic execution

At a high level, symbolic execution is an interpreter loop. Every iteration, it selects a symbolic process,

also known as a state, in whose context an instruction is then executed [7]. As shown in algorithm 1,

each path with possible satisfiability (SAT) of the given program is explored. The number of paths grows

at an exponential rate, so the interpreter loop also breaks at the exhaustion of the time budget [7], which

is omitted from the algorithm for brevity.

Algorithm 1 Symbolic execution
Input: Program (P)
Output: Set of test cases (T)

1: T ←∅
2: S← INITIALSTATE(P) ▷ set of states
3: while S ̸=∅ do
4: s← SELECT(S)
5: S← S\{s}
6: (i,e,Φ)← s ▷ instruction, environment, and path constraints
7: (i′,e′)← EXECUTE(i,e)
8: if ISHALT(i) then
9: t← GENERATETEST(Φ)

10: if t ̸=⊥ then T ← T ∪{t}
11: else if ISBRANCH(i) then
12: (ϕ, i′c, i

′
a)← i′ ▷ condition, consequent, and alternative

13: if SAT(Φ ∧ϕ) then
14: s′c← (i′c,e

′,Φ ∧ϕ)
15: S← S∪{s′c}
16: if SAT(Φ ∧¬ϕ) then
17: s′a← i′a,e

′,Φ ∧¬ϕ

18: S← S∪{s′a}
19: else
20: s′← (i′,e′,Φ)
21: S← S∪{s′}

2

A SAT problem involving background theories like arithmetic in computer programs is known as

a satisfiability modulo theories (SMT) problem, a generalization of the Boolean SAT problem [8], which

is already NP-complete. Under the exponential time hypothesis, the cost of solving an arbitrary SAT

problem grows exponentially with the number of variables [9].

2.2 Usage of KLEE

The symbolic execution engine KLEE analyses the LLVM intermediate representation (IR) of a program,

also known as its bitcode [10], starting from values marked as symbolic. Marking can be communicated

either through command-line options for files (including standard streams) and command-line arguments

or via in-source annotations [11].

As shown in algorithm 1, the path constraints are only expanded at branching instructions, so only

values affecting the control flow are tracked, since KLEE targets the exploration of execution paths.

In order to track other values of interest, i.e. non-inputs, a condition involving such value must be

artificially injected. One common idiom for doing this condition injection [12–14] is shown in figure 1.

There, a temporary symbolic avatar var is created for the sole purpose of being fixed to the value

val in the path constraints. From here, this mechanism shall be referred to in abstract descriptions as

SYMBOLICOUTPUT(VALUE, CONTEXT).

#define KLEE_OUTPUT_GEN(T) \

T __klee_output_##T(T val, ...) { T var; \

klee_make_symbolic(&var, sizeof(T), ...); \

klee_assume(var == val); return val; }

KLEE_OUTPUT_GEN(int) ...

#define KLEE_OUTPUT(T, val, ...) \

__klee_output_##T((val), ...)

(a)

int foo;

...

-bar(foo);

+bar(KLEE_OUTPUT(foo));

(b)

Figure 1: Condition injection (a) implementation in C and (b) example annotation.

3

III Technique

In order to generate test cases to distinguish between multiple patches, our tool extends symbolic exe-

cution in a number of ways. First, instead of taking in a single program, all of its revisions are passed

to the tool. Since each patch only modifies a small portion of the program, most of the code is shared

among these revisions, hence they are combined into a meta program to avoid repeating execution.

Second, we combine the path constraints in execution states of different revisions in a certain way

before feeding to a SMT solver to generate differential tests. Third, the new conditions the combined

SMT formula includes (aside from the conjunction of its parents) are assertions on the distinction of

corresponding values across revisions, so we offer multiple options to capture such symbolic outputs.

Next, we introduce concrete execution to reduce the theorem proving load, and produce differential

tests for clustering the patches and finally produce a decision tree. One may observe that the clustering

information can help with selecting more “promising” states, although such scheduling enhancement is

not covered by this work.

We implemented these extensions on top of KLEE in a tool named PSYCHIC, whose high-level

architectures are compared in figure 2. The overall process of PSYCHIC is denoted in algorithm 2.

States
Scheduler

Interpreter

Selected state

Child state

Theorem prover

Bitcode

Seed
input

Test
cases

(a)

States
Scheduler

Clusters

Interpreter

Selected state

Child state

Theorem proverFruitful states
Differentiator

State with output

Path conditions

Binary
Concrete input

Diff.
test

Bitcode

Decision
tree

Seed
input

(b)

Figure 2: Architecture overviews of (a) KLEE and (b) PSYCHIC extension.

4

Algorithm 2 Overall execution of PSYCHIC

Input: Meta program P
Output: Set of differential tests T

1: T ←∅
2: D←∅ ▷ Distinguished revision pairs
3: H←∅ ▷ Halt states
4: S← INITIALSTATE(P)
5: while S ̸=∅ do
6: (i,e,Φ ,n)← SELECT(S) ▷ instruction, environment, path constraints, and revision number
7: S← S\{(i,e,Φ ,n)}
8: (i′,e′)← EXECUTE(i,e)
9: if ISHALT(i) then

10: for (Φ ′,n′) ∈ H do
11: t← DIFFTEST(D,Φ ,n,Φ ′,n′)
12: if t ̸=⊥ then
13: T ← T ∪{t}
14: D← D∪DISTINGUISHPAIRS(t)
15: H← H ∪{(Φ ,n)}
16: else if ISBRANCH(i) then
17: (ϕ, i′c, i

′
a)← i′ ▷ condition, consequent, and alternative

18: if ISMETA(ϕ) then
19: S← S∪APPLYMETABRANCH(ϕ, i′c, i

′
a,e
′,Φ ,n)

20: else
21: if SAT(Φ ∧ϕ) then S← S∪{(i′c,e′,Φ ∧ϕ,n)}
22: if SAT(Φ ∧¬ϕ) then S← S∪{(i′a,e′,Φ ∧¬ϕ,n)}
23: else
24: if ISRETURN(i) then
25: Φ ′←Φ ∧FUNCTIONOUTPUTS(i)
26: else
27: Φ ′←Φ

28: S← S∪{(i′,e′,Φ ′)}

5

--- dfasearch.c c1cb19fe

+++ dfasearch.c 8f08d8e2

@@ -360,2 +360,1 @@

-beg = match;

-goto success_in_len;

+goto success;

(a)

--- dfasearch.c c1cb19fe

+++ dfasearch.c YmI4MGM3ND

@@ -360,2 +360,2 @@

beg = match;

-goto success_in_len;

+goto success;

(b)

Figure 3: Unified format of (a) a fix in grep’s commit 8f08d8e2, and (b) an alternative patch.

int __klee_meta2 = __klee_meta(2);

if (__klee_meta(2) == 0) { // original buggy version

beg = match;

} else if (__klee_meta2 == 82) { // upstream patch

} else if (__klee_meta2 == 43) { // alternative patch

beg = match;

}

int __klee_meta3 = __klee_meta(3);

if (__klee_meta(3) == 0) {

goto success_in_len;

} else if (__klee_meta3 == 82) {

goto success;

} else if (__klee_meta3 == 43) {

goto success;

}

Figure 4: Meta branches with the fixes in grep’s upstream and alternative patches in figure 3.

3.1 Meta program

The meta program format takes inspiration from program unification used for shadow symbolic exe-

cution. Unlike SHADOW which tests only one patch [6] to reveal its regressions, though, the goal of

PSYCHIC is to find the difference in behavior between multiple patches. Therefore, the former’s anno-

tation at the level of expressions does not meet our expectation on expressivity. Instead, we implement

higher-order branching. Annotating patches at block level simplifies the generation process and im-

proves the readability of the meta program.

For instance, given the two unified diffs [15] of a bug fix from upstream grep, and a patch in

DBGBENCH [16] in figure 3,* one can construct the relevant part of the meta program in figure 4,

where __klee_meta parses the environment for the choice of revision when executed concretely [17]

and returns a new symbolic value in symbolic evaluation. This way, the meta program can be used for

both executions to share metadata such as the patch identifier (82 and 43 in this case).

One may notice that the meta program may have any level of granularity. PSYCHIC utilizes the meta

program to maximize instructions and path constraints that are shared, which effectively means to defer

the divergence point deep into the control flow. For its intended use on automatically generated patches

whose hunks are commonly short, optimizing the meta program construction is not a major issue.

*These snippets have been outdented to fit within the width of this page.

6

In algorithm 2, ISMETA cheaply detects higher-order branching patch identifier, via basic tree pat-

tern matching [18] and skip adding its condition to the children states. Instead, those states carry the

revision number outside of their path constraints for constant-time access when pruning paths going

through multiple patches in algorithm 3.

Algorithm 3 Construction of possible states after a patch location
1: procedure APPLYMETABRANCH(ϕ, ic, ia,e,Φ ,n)
2: n′← REVISIONNUMBER(ϕ)
3: sa = (ia,e,Φ ,n) ▷ assume the lack of meta branch nesting and always follow alternative paths
4: if n = 0 then return {(ic,e,Φ ,n′),sa} ▷ ic enters patch n′

5: if n′ ̸= 0∧n ̸= n′ then return {sa} ▷ at most one simultaneous patch
6: return {(ic,e,Φ ,n),sa}

3.2 Symbolic output selection

PSYCHIC is based on KLEE and thus inherits its support for the diverse set of programs written in lan-

guages with C foreign function interface (FFI) for calling KLEE intrinsics and a compiler using LLVM

as a backend. One kind of LLVM instruction may be used for difference purposes, so for better appli-

cability we try to accommodate for a range of usages. For capturing output values, PSYCHIC offers the

following methods.

1. Source code annotation

2. Output files (including standard output)

3. Function return values

4. Pointers to mutable data as function arguments

Method 1 is handled similar to previous works described in section 2.2. With KLEE support for

symbolic files, the same avatar idiom is trivially applied for 2. However, since files are byte buffers,

their application in symbolic execution is limited due to the scalability of SMT solvers, which treat each

byte as a variable. For human-readable files, this is particularly inefficient due to their low informa-

tion entropy [19]. On the other hand, because of imperfect fault localization either by human [16] or

automatically [20], output annotation has limited exhaustiveness.

To balance between manual annotation and computational scalability, methods 3 and 4 are intro-

duced to automatically capture output more precisely at the end of every interested function. Debugging

information forwarded from compiler frontend are kept in bitcodes. They are used to limit the subrou-

tines to be monitored, for example in algorithm 4, the file that is patched by an APR tool.

Each symbolic output then is given a unique name for later comparison. For the sake of simplicity,

we name them after the capturing method and associated identifier, i.e. variable or subroutine.

7

Algorithm 4 Extraction of symbolic outputs of a function
1: procedure FUNCTIONOUTPUTS(i)
2: f ← FUNCTION(i)
3: if f is not in the patched file then return ⊤
4: Φ ← SYMBOLICOUTPUT(RETURNVALUE(i), f)
5: for a ∈ FUNCTIONARGUMENTS(i) do
6: if ISPOINTER(a)∧¬ISCONSTPOINTER(a)∧¬ISFUNCTIONPOINTER(a) then
7: Φ ←Φ ∧SYMBOLICOUTPUT(DEREFERENCE(a),a)
8: return Φ

3.3 Input generation

When two states monitor some commonly named symbolic outputs and are at parallel positions in their

path, their path constraints can be used to generate a differential test. Two states are said to be parallel

if and only if their program counter points to the same instruction and the conjunction of their path

conditions is satisfiable.

Currently PSYCHIC only compare halt states to minimize memory usage and SMT solving cost.

Such SMT formula is constructed in algorithm 5 by first append a suffix to each output name, then for

the common ones assert for a possible distinction between two paths. If the path constraints of both

states are SAT with at least one difference in outputs, a differential test can be generated from the SMT

model.

Halt states are reached naturally at the program’s termination or an error. The latter category also

includes sanitizer traps for undefined behavior (UB).

3.4 Decision tree construction

From each differential test, a set of clusters of revisions with the same output is constructed. We then

superimpose these clustering sets to create hierarchical clusterings or a decision tree. A minimal tree,

i.e. a tree with the shortest height, is found by searching through the subsets of the set of clustering sets.

8

Algorithm 5 Differential test generation

1: procedure DIFFTEST(D,Φ ,n,Φ ′,n′)
2: if n ̸= n′∨{n,n′} ∈ D then return ⊥
3: Ψ ,N← RENAMEOUTPUTS(Φ ,n)
4: Ψ ′,N′← RENAMEOUTPUTS(Φ ′,n′)
5: Ψdiff←

∨
a∈N∩N′ DISTINCT(a,n,n′)

6: if ¬SAT(Ψ ∧Ψ ′∧Ψdiff) then return ⊥
7: m←MODEL(Ψ ∧Ψ ′∧Ψdiff)
8: I← INPUTVALUES(m)
9: return (m,{EXECUTE(I,r) | r ∈ REVISIONS})

10: procedure RENAMEOUTPUTS(x,n)
11: X ,k← x ▷ subexpressions and kind
12: if ISREAD(t) then
13: a, i← X ▷ array name and index
14: if ISOUTPUT(a) then
15: a′← APPENDNAME(a,n)
16: x′← ((a′, i),k)
17: return x′,{a}
18: else
19: return x,∅
20: X ′← X
21: N←∅ ▷ seen output names
22: for i ∈ 1. .LENGTH(X) do
23: X ′i ,N+← RENAMEOUTPUTS(Ei,n)
24: N← N∪N+

25: return (X ′,k),N

9

IV Experiments

To evaluate our approach, we perform experiments with our implementation PSYCHIC on C meta pro-

grams to generate decision trees of patches.

4.1 Experiment setup

Experiments are run on a machine with AMD Ryzen 3700X at 3.6 GHz and 16 GB of memory. Software

dependencies and tooling are provided by a declarative Nix environment [21] for reproducibility.

We evaluate PSYCHIC on patches generated by MSV [17], a fork of the pattern-based APR tool

PROPHET [22] that adds extra repair templates and generate meta programs. Patches are generated for

INTROCLASS, a set of attempts for solving homework problems [23].

In addition to the test cases provided by INTROCLASS, which are non-exhaustive of the input do-

mains, we use property tests [24] with the respective ground truth program† to select buggy programs.

MSV then generate fixes in the form of meta programs, which are then post-processed into PSYCHIC-

compatible format.

Due to the limitation of KLEE’s POSIX runtime, libc calls such as scanf has to be replaced by

more direct access of standard input or command-line arguments. Unless the logic is outside of the

main function, an output value is manually annotated.

A selection of 10 meta programs with at least two semantically different revisions (including the

original buggy version) are then fed to PSYCHIC to generate differential tests and decision trees with

a timeout of 10 minutes. The vast majority of these bugs are either simple logical mistakes or missing

initializations that trigger UBs.

4.2 Results

Experiment results on INTROCLASS is summarized in table 1. In case of digits 1b31@2 and smallest

d25c@1, PSYCHIC failed to generate differential tests. In other cases, except for the timeout in digits

0cdf@3, the tool successfully differentiate all semantically different patches.

PSYCHIC took orders of magnitude more time on digits 0cdf@3 and smallest d25c@1, which

respectively include a loop and heavily-nested conditions.

To demonstrate the decision tree, we examine the result for grade 317a@3. The task is to calculate

the letter grade, given the threshold for each grade from A to D, followed by a percentage grade. This

attempt is buggy because it misses the initialization the result grade variable, which is inserted in various

locations by MSV. The decision tree generated from these patches is illustrated in figure 5, from which

patch number 10 can be deduced to be the most correct one.

†https://github.com/McSinyx/IntroClass

10

https://github.com/McSinyx/IntroClass

Task Attempt Bug type n Tree height Largest cluster Time (s)

checksum 3b23@3 Arithmetic 2 1 1 1.2
checksum cb24@3 Logic 3 1 2 1.7
digits 0cdf@3 Logic 16 1 5 600.0
digits 1b31@2 Logic 5 0 5 0.9
grade 1b31@3 UB 2 1 1 0.8
grade 317a@3 UB 8 3 5 1.0
grade b192@3 UB 2 1 1 0.5
median 97f6@3 UB 7 1 6 1.6
smallest 0704@2 UB 5 1 3 87.0
smallest d25c@1 UB 5 0 5 1.3

Table 1: Decision tree quality on the patch pool generated by MSV for INTROCLASS programs. Respec-
tive to each meta program with n revisions are the height of the patch decision tree and the maximum
number of undistinguished revisions.

Input: 6 3 2 1 0

Input: 66 7 6 2 1

Output: UB

Input: 6 3 2 1 1

Output: F

Original Patches 108, 147, 187, 227, 267 Patch 10 Patch 307

Output: UB Output: F O
ut

pu
t:

D Output: F

Figure 5: Decision tree generated from patches of grade 317a@3, with outputs minimized.

11

V Discussion

The experiment on INTROCLASS reveals some limitations of PSYCHIC. First, the tool has trouble

scaling with growing path spaces. While this is inherent to the path explosion problem, not all paths

need to be explored. Therefore, more aggressive path pruning [25,26] and scheduling heuristics [27–29]

could prove to be beneficial. The use of DIFFTEST on any (undifferentiated) state pair in algorithm 5

further hurts performance.

Next, while in theory, KLEE can execute any LLVM bitcode, the programming interface sets the limit

on logical interpretation. More specifically, to leave rooms for optimization, C and POSIX standards

leave a lot of behaviors unspecified. For example, function atoi(3), which converts string to integer,

may return any number upon a parsing error [30], lumping this implementation-defined number with

error cases.

Some others like scanf(3) and printf(3) are prohibitively expensive due to heavy pattern match-

ing, and since they operate on input/output, their calls are likely dominators or post-dominators in the

control-flow graph, requiring manual interventions. Failing to replace these calls could either signifi-

cantly degrade efficiency or force the theorem prover to give up on SMT solving. In case of INTRO-

CLASS, ignoring printf(3) calls disabled the use of output files capturing.

On more positive notes, capturing local function return values and mutable arguments has proved its

usability. Together with the use of eager concrete execution to skip symbolic test generation, promising

preliminaries have been obtained.

5.1 Threats to Validity

The small scope of experiments on toy programs challenges the practical generalizibility of the tool.

Since the PROPHET-based APR tool MSV mines for tokens within the codebase [22], patches are not

diverse in semantics and the overall result is not statistically strong.

5.2 Related Works

There exists multiple differential test generators for a pair of program revisions, such as NEZHA which

uses black- or gray-box fuzzing [5], SHADOW based on symbolic execution [6], and HYDIFF combining

both [26]. Some recent work targets the opposite problem of detecting semantic code clone [31].

For interpreting multiple program variants symbolically at the same time, alternative to PSYCHIC

keeping independent states, other approaches may choose shadow execution [6], or to join [32] or

merge [33] states at higher-order branches.

12

VI Conclusion

This work introduced a differential testing technique for multiple program variants at once, implemented

as an extension named PSYCHIC on top of the symbolic execution engine KLEE. It took into account

edge cases to lay out a groundwork to be easily used for a diverse set C programs to help developers with

choosing automatically generated patches. That being said, experiment results indicates a large room

for improvements.

In the future, other techniques need to be incorporated to improving the performance and general-

izibility. Sophisticated scheduling and path pruning could help with efficiency, and further works on

symbolic execution runtimes would also be beneficial. Parallel SMT symbolic execution [34] should

also be considered to make better use of modern hardware. Finally, a more comprehensive evaluation is

needed to prove the applicability of the approach.

13

References

[1] C. Larman and V. R. Basili, “Iterative and incremental developments: A brief history,” Computer,

vol. 36, no. 6, pp. 47–56, 2003, doi:10.1109/MC.2003.1204375.

[2] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on software fault localization,”

IEEE Trans. Softw. Eng. (TSE), vol. 42, no. 8, pp. 707–740, 2016, doi:10.1109/TSE.2016.2521368.

[3] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program repair,” Commun. ACM,

vol. 62, no. 12, pp. 56–65, Nov. 2019, doi:10.1145/3318162.

[4] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse than the disease? overfitting

in automated program repair,” in Proc. Joint Meet. Found. Softw. Eng. (FSE). ACM, 2015, pp.

532–543, doi:10.1145/2786805.2786825.

[5] T. Petsios, A. Tang, S. Stolfo, A. D. Keromytis, and S. Jana, “Nezha: Efficient domain-

independent differential testing,” in IEEE Symp. Secur. and Priv. (SP), 2017, pp. 615–632,

doi:10.1109/SP.2017.27.

[6] T. Kuchta, H. Palikareva, and C. Cadar, “Shadow symbolic execution for testing software patches,”

ACM Trans. Softw. Eng. Methodol. (TOSEM), vol. 27, no. 3, Sep. 2018, doi:10.1145/3208952.

[7] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and automatic generation of

high-coverage tests for complex systems programs,” in USENIX Symp. Oper. Syst. Des. and

Implement. (OSDI), Dec. 2008. [Online]. Available: https://www.usenix.org/conference/osdi-08/

klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems

[8] L. de Moura and N. Bjørner, “Satisfiability modulo theories: An appetizer,” in Formal Methods:

Foundations and Applications. Springer Berlin Heidelberg, 2009, pp. 23–36, doi:10.1007/978-3-

642-10452-7 3.

[9] R. Impagliazzo and R. Paturi, “Complexity of k-SAT,” in Proc. IEEE Conf. Comput. Complex.

(CCC), 1999, pp. 237–240, doi:10.1109/CCC.1999.766282.

[10] LLVM Project, LLVM 13.0.1 documentation, Feb. 2022, ch. LLVM Bitcode File Format. [Online].

Available: https://releases.llvm.org/13.0.1/docs/BitCodeFormat.html

[11] KLEE documentation, the KLEE team. [Online]. Available: https://klee.github.io/docs

14

https://oadoi.org/10.1109/MC.2003.1204375
https://oadoi.org/10.1109/TSE.2016.2521368
https://oadoi.org/10.1145/3318162
https://oadoi.org/10.1145/2786805.2786825
https://oadoi.org/10.1109/SP.2017.27
https://oadoi.org/10.1145/3208952
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://www.usenix.org/conference/osdi-08/klee-unassisted-and-automatic-generation-high-coverage-tests-complex-systems
https://oadoi.org/10.1007/978-3-642-10452-7_3
https://oadoi.org/10.1007/978-3-642-10452-7_3
https://oadoi.org/10.1109/CCC.1999.766282
https://releases.llvm.org/13.0.1/docs/BitCodeFormat.html
https://klee.github.io/docs

[12] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program patch synthesis

via symbolic analysis,” in Proc. ACM/IEEE Int. Conf. Softw. Eng. (ICSE), 2016, pp. 691–701,

doi:10.1145/2884781.2884807.

[13] R. S. Shariffdeen, Y. Noller, L. Grunske, and A. Roychoudhury, “Concolic program repair,” in

Proc. ACM SIGPLAN Int. Conf. Program. Lang. Des. and Implement. (PLDI), 2021, pp. 390–405,

doi:10.1145/3453483.3454051.

[14] N. Parasaram, E. T. Barr, and S. Mechtaev, “Trident: Controlling side effects in automated program

repair,” IEEE Trans. Softw. Eng. (TSE), pp. 4717–4732, 2022, doi:10.1109/TSE.2021.3124323.

[15] D. MacKenzie, P. Eggert, and R. Stallman, Comparing and Merging Files for Diffutils 3.10 and

patch 2.5.4. GNU Project, Jan. 2023, ch. diff Output Formats, p. 13. [Online]. Available:

https://www.gnu.org/software/diffutils/manual/html node/Detailed-Unified.html

[16] M. Böhme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and A. Zeller, “Where is the bug

and how is it fixed? An experiment with practitioners,” in Proc. Joint Meet. Eur. Softw. Eng. Conf.

and ACM Symp. Found. Softw. Eng. (ESEC/FSE), 2017, doi:10.1145/3106237.3106255.

[17] Y. Kim. MSV. [Online]. Available: https://github.com/Suresoft-GLaDOS/MSV

[18] C. M. Hoffmann and M. J. O’Donnell, “Pattern matching in trees,” J. ACM, vol. 29, no. 1, pp.

68–95, Jan. 1982, doi:10.1145/322290.322295.

[19] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical Journal,

vol. 27, no. 3, pp. 379–423, 1948, doi:10.1002/j.1538-7305.1948.tb01338.x.

[20] S. Pearson, J. Campos, R. Just, G. Fraser, R. Abreu, M. D. Ernst, D. Pang, and B. Keller, “Evaluat-

ing and improving fault localization,” in Proc. ACM/IEEE Int. Conf. Softw. Eng. (ICSE), 2017, pp.

609–620, doi:10.1109/ICSE.2017.62.

[21] E. Dolstra and A. Hemel, “Purely functional system configuration management,” in

USENIX workshop on Hot top. oper. syst. (HotOS), May 2007. [Online]. Available:

https://www.usenix.org/conference/hotos-xi/purely-functional-system-configuration-management

[22] F. Long and M. Rinard, “Automatic patch generation by learning correct code,” in

Proc. ACM SIGPLAN-SIGACT Symp. Princ. Program. Lang. (POPL), 2016, pp. 298–312,

doi:10.1145/2837614.2837617.

[23] C. Le Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu, S. Forrest, and W. Weimer, “The

ManyBugs and IntroClass benchmarks for automated repair of C programs,” IEEE Trans. Softw.

Eng. (TSE), vol. 41, no. 12, pp. 1236–1256, Dec. 2015, doi:10.1109/TSE.2015.2454513.

[24] D. R. MacIver, Z. Hatfield-Dodds, and many other contributors, “Hypothesis: A new approach

to property-based testing,” Journal of Open Source Software, vol. 4, no. 43, p. 1891, 2019,

doi:10.21105/joss.01891.

15

https://oadoi.org/10.1145/2884781.2884807
https://oadoi.org/10.1145/3453483.3454051
https://oadoi.org/10.1109/TSE.2021.3124323
https://www.gnu.org/software/diffutils/manual/html_node/Detailed-Unified.html
https://oadoi.org/10.1145/3106237.3106255
https://github.com/Suresoft-GLaDOS/MSV
https://oadoi.org/10.1145/322290.322295
https://oadoi.org/10.1002/j.1538-7305.1948.tb01338.x
https://oadoi.org/10.1109/ICSE.2017.62
https://www.usenix.org/conference/hotos-xi/purely-functional-system-configuration-management
https://oadoi.org/10.1145/2837614.2837617
https://oadoi.org/10.1109/TSE.2015.2454513
https://oadoi.org/10.21105/joss.01891

[25] S. Cha and H. Oh, “Making symbolic execution promising by learning aggressive state-pruning

strategy,” in Proc. Joint Meet. Eur. Softw. Eng. Conf. and ACM Symp. Found. Softw. Eng.

(ESEC/FSE), 2020, pp. 147–158, doi:10.1145/3368089.3409755.

[26] Y. Noller, C. S. Păsăreanu, M. Böhme, Y. Sun, H. L. Nguyen, and L. Grunske, “HyDiff: Hybrid

differential software analysis,” in Proc. ACM/IEEE Int. Conf. Softw. Eng. (ICSE), 2020, pp. 1273–

1285, doi:10.1145/3377811.3380363.

[27] K.-K. Ma, K. Y. Phang, J. S. Foster, and M. Hicks, “Directed symbolic execution,” in Proc. Int.

Conf. Static Analysis (SAS), 2011, pp. 95–111, doi:10.5555/2041552.2041563.

[28] D. Qi, D. H. Nguyen, and A. Roychoudhury, “Path exploration based on symbolic out-

put,” in Proc. ACM SIGSOFT Symp. and Eur. Conf. Found. Softw. Eng., 2011, pp. 278–288,

doi:10.1145/2025113.2025152.

[29] S. Cha, S. Hong, J. Bak, J. Kim, J. Lee, and H. Oh, “Enhancing dynamic symbolic execution

by automatically learning search heuristics,” IEEE Trans. Softw. Eng. (TSE), vol. 48, no. 9, pp.

3640–3663, 2022, doi:10.1109/TSE.2021.3101870.

[30] IEEE and The Open Group, The Open Group Base Specifications, 2018, ch. atoi. [Online].

Available: https://pubs.opengroup.org/onlinepubs/9699919799/functions/atoi.html

[31] K. Takemoto and S. Takada, “Applying symbolic execution to semantic code clone detection,”

in Int. Conf. Softw. Eng. and Knowl. Eng. (SEKE). KSI Research Inc., 2023, pp. 118–122,

doi:10.18293/SEKE2023-070.

[32] T. Hansen, P. Schachte, and H. Søndergaard, “State joining and splitting for the symbolic ex-

ecution of binaries,” in Runtime Verification. Springer Berlin Heidelberg, 2009, pp. 76–92,

doi:10.1007/978-3-642-04694-0 6.

[33] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient state merging in symbolic execution,”

SIGPLAN Not., vol. 47, no. 6, pp. 193–204, Jun. 2012, doi:10.1145/2345156.2254088.

[34] E. Rakadjiev, T. Shimosawa, H. Mine, and S. Oshima, “Parallel smt solving and con-

current symbolic execution,” in IEEE Trustcom/BigDataSE/ISPA, vol. 3, 2015, pp. 17–26,

doi:10.1109/Trustcom.2015.608.

16

https://oadoi.org/10.1145/3368089.3409755
https://oadoi.org/10.1145/3377811.3380363
https://oadoi.org/10.5555/2041552.2041563
https://oadoi.org/10.1145/2025113.2025152
https://oadoi.org/10.1109/TSE.2021.3101870
https://pubs.opengroup.org/onlinepubs/9699919799/functions/atoi.html
https://oadoi.org/10.18293/SEKE2023-070
https://oadoi.org/10.1007/978-3-642-04694-0_6
https://oadoi.org/10.1145/2345156.2254088
https://oadoi.org/10.1109/Trustcom.2015.608

Acknowledgements

This work was partly supported by the National Research Foundation of Korea (NRF) grant funded

by the Korea government (MSIT) (No.2021R1A2C1009819) and the Institute for Information & Com-

munications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT)

(No.2021-0-01001).

The experiments would not be possible without YoungJae Kim’s work on meta program format and

the automatic patch generator MSV, and integration efforts by Trương Huy Trung.

I would also like to thank my academic advisor, Dr Jooyong Yi, and other lab mates for being

nothing but supportive both in life and at work, even though I could be antisocial at times. Last but not

least, I am grateful of my family and friends back in Việt Nam, and the new friends I met here in UNIST,

especially in the shared kitchen, for their consistent support and encouragements.

17

	Introduction
	Background
	Symbolic execution
	Usage of klee

	Technique
	Meta program
	Symbolic output selection
	Input generation
	Decision tree construction

	Experiments
	Experiment setup
	Results

	Discussion
	Threats to Validity
	Related Works

	Conclusion
	References
	Acknowledgements

